Robust Data-Driven Efficiency Guarantees in Auctions
نویسندگان
چکیده
Analysis of welfare in auctions comes traditionally via one of two approaches: precise but fragile inference of the exact details of a setting from data or robust but coarse theoretical price of anarchy bounds that hold in any setting. As markets get more and more dynamic and bidders become more and more sophisticated, the weaknesses of each approach are magnified. In this paper, we provide tools for analyzing and estimating the empirical price of anarchy of an auction. The empirical price of anarchy is the worst case efficiency loss of any auction that could have produced the data, relative to the optimal. Our techniques are based on inferring simple properties of auctions: primarily the expected revenue and the expected payments and allocation probabilities from possible bids. These quantities alone allow us to empirically estimate the revenue covering parameter of an auction which allows us to re-purpose the theoretical machinery of Hartline et al. [2014] for empirical purposes. Moreover, we show that under general conditions the revenue covering parameter estimated from the data approaches the true parameter with the error decreasing at the rate proportional to the square root of the number of auctions and at most polynomially in the number of agents. While we focus on the setting of position auctions, and particularly the generalized second price auction, our techniques are applicable far more generally. Finally, we apply our techniques to a selection of advertising auctions on Microsoft’s Bing and find empirical results that are a significant improvement over the theoretical worst-case bounds.
منابع مشابه
Robust Data-Driven Guarantees in Auctions
Analysis of welfare in auctions comes traditionally via one of two approaches: precise but fragile inference of the exact details of a setting from data or robust but coarse theoretical price of anarchy bounds that hold in any setting. As markets get more and more dynamic and bidders become more and more sophisticated, the weaknesses of each approach are magnified. In this paper, we provide too...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملEffect of Information Feedback on Bidder Behavior in Continuous Combinatorial Auctions
Combinatorial auctions – in which bidders can bid on combinations of goods – can increase the economic efficiency of a trade when goods have complementarities. Recent theoretical developments have lessened the computational complexity of these auctions, but the issue of cognitive complexity remains an unexplored barrier for the online marketplace. This study uses a data-driven approach to explo...
متن کاملTask-space Control of Electrically Driven Robots
Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.00437 شماره
صفحات -
تاریخ انتشار 2015